Accurate delimitation of species boundaries is especially important in cryptic taxa where one or more character sources are uninformative or are in conflict. Rather than relying on a single marker to delimit species, integrative taxonomy uses multiple lines of evidence such as molecular, morphological, behavioural and geographic characters to test species limits. We examine the effectiveness of this approach by testing the delimitation of two cryptic Nearctic species of Dioryctria (Lepidoptera: Pyralidae) using three independent molecular markers [cytochrome c oxidase I (COI), second internal transcribed spacer unit (ITS2), and elongation factor 1alpha (EF1alpha)], forewing variation and larval host plant association. Although mitochondrial DNA (mtDNA) haplotypes do not form reciprocally monophyletic clades, restricted gene flow between COI haplotype groups, and concordance with ITS2 genotypes, forewing variation and host plant associations support delimitation of two Nearctic species: eastern Dioryctria reniculelloides and western Dioryctria pseudotsugella. Conversely, EF1alpha genotype variation was incongruent with the two previous markers. A case of discordance between COI and ITS2 was detected, suggesting either introgression due to hybridization or retained ancestral polymorphism due to incomplete coalescence. This study is consistent with other similar literature where molecular loci in closely related species progress from shared to fixed haplotypes/alleles, and from polyphyletic to reciprocally monophyletic relationships, although loci may vary in these characteristics despite maintenance of genomic integrity between distinct species. In particular, mtDNA in other studies generally showed a lower rate of fixation of differences than did X-linked or autosomal loci, reinforcing the need to use an integrative approach for delimiting species.