The 2021 WHO classification of CNS tumors is a challenge for neuroradiologists due to the central role of the molecular profile of tumors. The potential of novel data analysis tools in neuroimaging must be harnessed to maintain its role in predicting tumor subgroups. We performed a scoping review to determine current evidence and research gaps. A comprehensive literature search was conducted regarding glioma subgroups according to the 2021 WHO classification and the use of MRI, radiomics, machine learning, and deep learning algorithms. Sixty-two original articles were included and analyzed by extracting data on the study design and results. Only 8% of the studies included pediatric patients. Low-grade gliomas and diffuse midline gliomas were represented in one-third of the research papers. Public datasets were utilized in 22% of the studies. Conventional imaging sequences prevailed; data on functional MRI (DWI, PWI, CEST, etc.) are underrepresented. Multiparametric MRI yielded the best prediction results. IDH mutation and 1p/19q codeletion status prediction remain in focus with limited data on other molecular subgroups. Reported AUC values range from 0.6 to 0.98. Studies designed to assess generalizability are scarce. Performance is worse for smaller subgroups (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas). More high-quality study designs with diversity in the analyzed population and techniques are needed.