The ability to image and quantify multiple biomarkers in disease necessitates the development of split reporter fragment platforms. We have divided the β-galactosidase enzyme into unique, independent polypeptides that are able to re-assemble and complement enzymatic activity in bacteria and in mammalian cells. We created two sets of complementing pairs that individually have no enzymatic activity. However, when brought into close geometric proximity, the complementing pairs associated resulting in detectable enzymatic activity. We then constructed a stable ligand complex comprised of reporter fragment, linker, and targeting moiety. The targeting moiety, in this case a ligand, allowed cell surface receptor targeting in vitro. Further, we were able to simultaneously visualize two cell surface receptors implicated in cancer development, epidermal growth factor receptor and transferrin receptor, using complementing pairs of the ligand-reporter fragment complex.