Neuroendocrine tumors (NEN) are a group of neoplasms that arise from hormonal and neural cells. Despite a common origin, their clinical symptoms and outcomes are varied. They are most commonly localized in the gastrointestinal tract. Targeted radioligand therapy (RLT) is a treatment option which has proven to be successful in recent studies. However, the possible outcomes and true safety profile of the treatment need to be fully determined, especially by new, more sensitive methods. Our study aimed to present an extended analysis of acute and chronic renal complications during and after radioligand therapy using, for the first time in the literature, innovative and complex renal parameters. Forty patients with neuroendocrine tumors underwent four courses of radioligand therapy with [177Lu]Lu-DOTATATE or [177Lu]Lu/[90Y]Y-DOTATATE. Radioisotopes were administrated in intervals of 8–12 weeks, with concurrent intravenous nephroprotection. New detailed and sensitive renal parameters were used to determine the renal safety profile during and after radioisotope therapy for standard treatment of NEN. During the first and fourth courses of RLT, no change in the glomerular filtration rate (GFR) was observed. However, long-term observations one year after the treatment showed a 10% reduction in the GFR. During the first course of treatment, the fractional urea and calcium excretions increased, while the fractional potassium concentration decreased. The fractional calcium excretion remained highly increased in long-term observations. Decreases in urine IL-18, KIM-1 and albumin concentrations were observed during RLT. The concentrations of IL-18 and KIM-1 remained low even a year after therapy. The ultrasound parameters of renal perfusion changed during treatment, before partially returning to the baseline one year after therapy, and were correlated with the biochemical parameters of renal function. A permanent increase in diastolic blood pressure was correlated with the decrease in the GFR observed during the study. In this innovative and complex renal assessment during and after RLT, we found a permanent 10% per year decrease in the GFR and noticeable disturbances in renal tubule function. The diastolic blood pressure also increased.