Gliomas originating from glial cells comprise about 30% of all primary central nervous system tumors and 80% of malignant brain tumors. Gliomas differ in their biological activity and are categorized according to grades, from benign to malignant with high recurrence rates. For diagnosis, location and extent of the tumor is assessed by CT and MRI, but for grading, additional parameters are necessary: contrast enhanced CT and MRI reveal damage of the blood-brain barrier, perfusion-weighted MRI shows regional blood supply, and MR spectroscopy permits insight into regional metabolism. Positron emission tomography (PET) of glucose metabolism as well as amino acid and nucleoside uptake can assess tumor grade and invasive growth, indicate effects on function of tissues outside of the tumor, demonstrate treatment efficacy, detect recurrences, and yield prognostic information. Coregistration of PET and MRI combines high-resolution morphological information with biological information. This imaging technology is optimized in hybrid MRI/PET by which morphologic, functional, metabolic, and molecular information is assessed simultaneously in the human brain.