In an era where the requirement for greener chemical processes is so exigent, the growing need for developing novel routes to environmentally benign and sustainable catalytic procedures is highly desirable. Heterogenising bio-inspired transition-metal complexes on a diverse range of porous supports provides a viable alternative for achieving some of these goals, particularly in terms of reducing waste and by increasing efficiency and selectivity in industrially significant catalytic processes. Choosing an appropriate spatial-restricting support is vital for facilitating enhancements in rate and stereoselectivity, as this plays a pivotal role in optimising the orientation of desired transition-states through varying confinement effects, by utilising a myriad of pore-window apertures for regulating diffusion of organic molecules. The nature of the active site can also be further attuned by adopting an appropriate encapsulation strategy, which could eventually assist in maximising the hydrophilic/hydrophobic character of the support. The nature of the active site and its involvement in the catalytic process can be characterised by using a wide-range of physico-chemcial spectroscopic techniques, which provide valuable insights for drawing mechanistic relationships, which in turn facilitates structure-property correlations.