Phenylalanine arginine β-naphthylamine, or PAβN, is a Cterminus capped dipeptide discovered in 1999 as an RND-type efflux pump inhibitor (EPI). Since then, PAβN has become a standard tool compound in EPI research and development. Despite this, PAβN lacks a detailed or efficient synthesis, and standard parameters for its use in wild-type bacterial strains are inconsistent or non-existent. Therefore, a scalable and chromatography-free synthesis of PAβN was developed using streamlined traditional solution-phase peptide coupling chemistry. With this procedure, gram scale quantities of PAβN were synthesized alongside analogues and stereoisomers to build a focused library to evaluate simple structure activity relationships. While most analogues were less active than the broadly utilized L,L-PAβN itself, we identified that its enantiomer, D,D-PAβN, also provided 8-to 16-fold potentiation of the antibiotic levofloxacin at 40 to 50 μg/mL concentrations of EPI in various wild-type Pseudomonas aeruginosa strains. Additionally, D,D-PAβN was shown to be significantly more hydrolytically stable than L,L-PAβN, indicating that it may be a useful, and now readily synthesized, tool compound facilitating future EPI research.