The aim of this work was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy as a rapid and accurate technique to detect and predict the onset of spoilage in fresh chicken breast fillets stored at 3, 8, and 30°C. Chicken breasts were excised from carcasses at 6 h post-mortem; cut in fillets; packed in air; stored at 3, 8, and 30ºC; and periodically examined for FTIR, pH, microbiological analysis, and sensory assessment of freshness. Partial least squares regression allowed estimations of total viable counts (TVC), lactic acid bacteria (LAB), Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae counts and pH, based on FTIR spectral data. Analysis of an external set of samples allowed the evaluation of the predictability of the method. The correlation coefficients (R 2) for prediction were 0.798, 0.832, 0.789, 0.810, 0.857, and 0.880, and the room mean square error of prediction were 0.789, 0.658, 0.715, 0.701, 0.756 log cfu g −1 and 0.479 for TVC, LAB, Pseudomonas spp., B. thermosphacta, Enterobacteriaceae, and pH, respectively. The spectroscopic variables that can be linked and used by the models to predict the spoilage/ freshness of the samples, pH, and microbial counts were the absorbency values of 375 wave numbers from 1,700 to 950 cm −1. A principal component analysis led to the conclu-1,370 cm −1 and from 1,320 to 1,305 cm −1 are strongly connected to changes during spoilage. These wave numbers are linked to amides and amines and may be considered potential wave numbers associated with the biochemical changes during spoilage. Discriminant analysis of spectral data was successfully applied to support sensory data and to accurately bound samples freshness. According to the results presented, it is possible to conclude that FTIR spectroscopy can be used as a reliable, accurate, and fast method for real time freshness evaluation of chicken breast fillets during storage.