Peptides have been used as drugs to treat various health conditions, and they are also being developed as diagnostic agents. Due to their receptor selectivity, peptides have recently been utilized for drug delivery to target drug molecules to specific types of cells (i.e. cancer cells, immune cells) to lower the side effects of the drugs. In this case, the drug is conjugated to the carrier peptide for directing the drug to the target cells (e.g. cancer cells) with higher expression of a specific receptor that recognizes the carrier peptide. As a result, the drug is directed to the target diseased cells without affecting the normal cells. Peptides are also being developed for improving drug delivery through the intestinal mucosa barrier (IMB) and the blood-brain barrier (BBB). These peptides were derived from intercellular junction proteins such as occludins, claudins, and cadherins and improve drug delivery through the IMB and BBB via the paracellular pathways. It is hypothesized that the peptides modulate protein-protein interactions in the intercellular junctions of the IMB and BBB to increase the porosity of paracellular pathways of the barriers. These modulator peptides have been shown to enhance brain delivery of small molecules and medium-sized peptides as well as a large protein such as 65 kDa albumin. In the future, this method has the potential to improve oral and brain delivery of therapeutic and diagnostic peptides and proteins.