Chemistry traditionally relies on reactions in solution, but this method is increasingly problematic due to the scale of chemical processes and their economic and environmental impact. Handling residual chemical waste, including solvents, incurs significant costs and environmental pressure. Conversely, novel chemical approaches are needed to address pressing societal issues such as climate change, energy scarcity, food insecurity, and waste pollution. Mechanochemistry, a sustainable chemistry discipline that uses mechanical action to induce chemical reactivity without bulk solvents, is a hot topic in academic research on sustainable and green chemistry. Given its fundamentally different working principles from solution chemistry, mechanochemistry offers more efficient chemical processes and the opportunity to design new chemical reactions. Mechanochemistry has a profound impact on many urgent issues facing our society and it is now necessary to use mechanochemistry to address them. This Minireview aims to provide a guide for using mechanochemistry to meet the United Nations (UN) Sustainable Development Goals (SDGs), thereby contributing to a prosperous society. Detailed analysis shows that mechanochemistry connects with most UN SDGs and offers more cost‐efficiency than other approaches together with a superior environmental performance.