This work carried out research to determine the possibilities of using graphene oxide to provide wood with new functional features. With the saturation parameters used and working liquid with a concentration of 0.004% graphene oxide, the retention of the nanomaterial in wood was 0.25 kg/m3. The presence of graphene oxide increased the crystallinity of the wood to 64% (compared with 57% for unmodified wood). The TG/DTG spectra of wood impregnated with graphene oxide and the control wood indicated that the initial weight loss of the samples observed at a temperature of 100 °C was similar and amounted to less than 4%. A second mass loss was observed in a temperature range of 270 to 380 °C. The mass loss in this temperature range reached 70% and was similar in the test and control samples. Wood modified with graphene oxide showed increased thermal stability in a temperature range of 360 to 660 °C compared with native wood. Given the results obtained, there were no statistically significant differences in the water absorption of modified or control wood. The presence of low concentrations of graphene oxide in the culture medium did not inhibit the growth of the fungus Trichoderma viride; however, a decrease in the growth activity of mycelial hyphae was observed with an increasing concentration of nanomaterial in the medium. It has been reported that graphene oxide, as a stress factor, initiates changes at the cellular level, characterized by the formation of structures called chlamydospores by the body.