Nanostructured Ni 50 Ti 50 powders were prepared by mechanical alloying from elemental Ni and Ti micrometer-sized powders, using a planetary ball mill type Fritsch Pulverisette 7. In this study, the effect of milling time on the evolution of structural and microstructural parameters is investigated. Through Rietveld refinements of X-ray diffraction patterns, phase composition and structural/microstructural parameters such as lattice parameters, average crystallite size ⟨ ⟩, microstrain ⟨ 2 ⟩ 1/2 , and stacking faults probability (SFP) in the frame of MAUD software have been obtained. For prolonged milling time, a mixture of amorphous phase, NiTi-martensite (B19 ), and NiTi-austenite (B2) phases, in addition to FCC-Ni(Ti) and HCP-Ti(Ni) solid solutions, is formed. The crystallite size decreases to the nanometer scale while the internal strain increases. It is observed that, for longer milling time, plastic deformations introduce a large amount of stacking faults in HCP-Ti(Ni) rather than in FCC-Ni(Ti), which are mainly responsible for the observed large amount of the amorphous phase.