Intercalation pseudocapacitance is a faradaic electrochemical phenomenon with high power and energy densities, combining the attractive features of capacitors and batteries, respectively. Intercalation pseudocapacitive responses exhibit surface-limited kinetics by definition, without restriction from the collective of diffusion-based processes. The surface-limited threshold (SLT) corresponds to the maximum voltage sweep rate (v SLT ) exhibiting a predominantly surface-limited current response prior to the onset of diffusion-limitations. Prior studies showed increased lithium diffusivity for amorphous titania compared to anatase. Going beyond prior binary comparisons, here a continuum of amorphous titania configurations were prepared using a series of calcination temperatures to tailor both amorphous character and content. The corresponding amorphous-phase v SLT increased monotonically by 317 % with lowered calcination temperatures. Subsequent isomorphic comparisons varying a single transport parameter at a time identified solid-state lithium diffusion as the dominant diffusive constraint. Thus, performance improvements were linked to increasing the lithium diffusivity of the amorphous phase with decreased calcination temperature. This remarkably enabled 95 % capacity retention (483 � 17 C/g) with 30 s of delithiation (120 C equivalent). These results highlight how isomorphic sample series can reveal previously unidentified trends by reducing ambiguity and reiterate the potential of amorphization to realize increased performance in known materials.[a] W. van den Bergh, T.