Objective. Perphenazine (PPZ), as a typical antipsychotic medical substance, has the same effectiveness compared to atypical antipsychotic medications for the treatment of schizophrenia. Despite the lipophilic essence, PPZ encounters limited bioavailability caused by the first-pass metabolism following oral administration. In the present study, PPZ-containing solid lipid nanoparticles (PPZ-SLNs) were prepared and optimized based on different factors, including lipid and surfactant amount, to develop appropriate and safe novel oral dosage forms of PPZ. Methods. The solvent emulsification-evaporation method was utilized to form SLNs by using soybean lecithin, glycerol monostearate (GMS), and Tween 80. Statistical optimization was done by the Box-Behnken design method to achieve formulation with optimized particle size, entrapment efficiency, and zeta potential. Also, transmission electron microscopy, in vitro release behavior, differential scanning calorimetry (DSC), and powder X-ray diffractometry (P-XRD) studies and cytotoxicity studies were assessed. Results. Optimization exhibited the significant effect of various excipients on SLN characteristics. Our finding indicated that the mean particle size, zeta potential, and entrapment efficiency of optimized PPZ-SLN were, respectively,
104
±
3.92
nm
,
−
28
±
2.28
mV
, and
83
%
±
1.29
. Drug release of PPZ-SLN was observed to be greater than 90% for 48 h that emphasized a sustained-release pattern. The DSC and P-XRD studies revealed the amorphous state of PPZ-SLN. FTIR spectra showed no incompatibility between the drug and the lipid. Performing cytotoxicity studies indicated no significant cytotoxicity on HT-29 cell culture. Conclusion. Our study suggests that PPZ-SLNs can make a promising vehicle for a suitable therapy of schizophrenia for the oral drug delivery system.