The ability to estimate the state of a human partner is an insufficient basis on which to build cooperative agents. Also needed is an ability to predict how people adapt their behavior in response to an agent's actions. We propose a new approach based on computational rationality, which models humans based on the idea that predictions can be derived by calculating policies that are approximately optimal given human‐like bounds. Computational rationality brings together reinforcement learning and cognitive modeling in pursuit of this goal, facilitating machine understanding of humans.