2018
DOI: 10.48550/arxiv.1805.09039
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Amortized Context Vector Inference for Sequence-to-Sequence Networks

Abstract: Neural attention (NA) has become a key component of sequence-to-sequence models that yield state-of-the-art performance in as hard tasks as abstractive document summarization (ADS) and video captioning (VC). NA mechanisms perform inference of context vectors; these constitute weighted sums of deterministic input sequence encodings, adaptively sourced over long temporal horizons. Inspired from recent work in the field of amortized variational inference (AVI), in this work we consider treating the context vector… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?