In arid and semiarid environments, the presence of woody species generates a series of environmental gradients that increase spatial heterogeneity and modify the pattern of distribution of the other species. We postulate that the temporal and spatial variability in litter input generated by woody species is a relevant factor in the generation of edaphic heterogeneity by redistribution of nutrients and the physical effects of litter. The objective of this study was to determine the temporal and spatial variability in the amount of litter input under the canopy of dominant woody plants (Prosopis flexuosa and Larrea divaricata) and in exposed areas at the Ñ acuñán Reserve, in the central zone of the Monte desert. Litterfall was collected during 2 years from 30-cm-diameter litter traps distributed at three microsites: under P. flexuosa canopy, under L. divaricata canopy, and in exposed areas. Microhabitats beneath Prosopis showed the highest litter input per m 2 (between 320 and 527 g/m 2 ), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m 2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.