Bone morphogenetic protein-2 (BMP-2) is a well-known osteoinductive protein, which requires a carrier for local application. As an alternative to the previously described carriers, an in situ hardening, resorbable, and osteoconductive beta-tricalcium phosphate cement (TCP) is tested. Trepanation defects in the bovine distal femoral epiphysis are filled with a composite consisting of TCP and 200 microg rhBMP-2 per cm3 TCP, autologous bone graft, pure TCP, or left empty. A radiological follow-up is performed after 7 weeks and 3 months. The sheep are euthanized and bone samples are analyzed by microradiography, histology, and histomorphometry. Microradiography and histology show similar results for pure TCP and the composite. The defects are filled with trabecular bone and newly formed bone is in close contact with the remaining TCP-particles. The majority of the cement is resorbed, in the composite group the amount of remaining cement particles is reduced. Defects treated with autologous bone graft are filled completely, while untreated defects shows only a small amount of bone originating from the rim of the defect. Histomorphometry of the defects treated with pure TCP shows a significantly increased bone content in comparison to defects treated with the composite or autologous bone graft. Analysis of the remaining cement particles shows significantly less cement in the TCP/rhBMP-2 group in comparison to pure TCP. The sum of bone and cement content in the rhBMP-2 group shows amounts comparable to the calcified structures found following autologous bone grafting. The addition of rhBMP-2 to the TCP leads to faster remodeling of the defect comparable to autologous bone graft, while defects treated with pure TCP are not completely remodeled.