In the past decade we have seen a milder phenotype and decreased incidence of HIV-1 associated dementia (HAD), largely due to the widespread use of combination chemotherapy to reduce viral burden. However, the prevalence of neurologic disease in people living with HIV-1 has actually increased, raising significant concerns that new therapeutic strategies, directed at restoring neuronal and glial homeostasis and signaling in the central nervous system (CNS), as opposed to directly interfering with the life cycle of HIV-1, must be developed. In this review, we focus briefly on previous Phase 1 clinical trials for adjunctive (i.e., chemotherapeutic agents that do not have a primary antiretroviral mechanism of action) therapy in patients with HAD, followed by an overview of key molecular events in the neuropathogenesis of HAD, and then discuss in more detail our rationale for investigating the effects of therapeutic agents that restore impaired mitochondrial bioenergetics in the CNS. Specifically, we focus on agents that either work in part through K-ATP channels, present in both mitochondria and plasma membranes, and agents that work to weakly uncouple the respiratory capacity of the electron transport chain in mitochondria from ATP production. We propose these agents may be complementary to currently available antiretroviral agents and may significantly improve the capacity of CNS infected with HIV-1 to meet increased bioenergetic demands involved in normal synaptic communication.