Moesin is a member of the ERM family, a family of cross-linkers between the plasma membrane and the actin cytoskeleton, which are known to be activated by phosphorylation. Previously, we reported the RhoA and Rho kinase-dependent phosphorylation of moesin at Thr-558 in hippocampal neuronal cells by glutamate. Here we studied the induction of moesin phosphorylation by KCl (60 mM) in PC12 cells. Moesin phosphorylation at Thr-558 was increased after 2 min of KCl treatment, peaked at 5 min, and returned to the basal level by 60 min. KCl also activated Rac1, but not RhoA, in PC12 cells, and KCl-induced moesin phosphorylation was suppressed in dominant negative Rac1 (N17 Rac1)-expressed cells. The inhibition of protein kinase A (PKA), known as an upstream kinase of Rac1, abolished Rac1 activation and moesin phosphorylation by KCl. Interestingly, the phosphorylation of moesin by KCl was independent of KCl-induced membrane depolarization and calcium influx but was dependent on KCl-induced chloride conductance. 60 mM KCl induced chloride conductance in PC12 cells, and pretreatment with Cl ؊ channel blocker abolished Rac1 activation and moesin phosphorylation by KCl. These results suggest that the phosphorylation of moesin at Thr-558 in PC12 cells by KCl treatment is PKA-and Rac1-dependent and that KCl-induced chloride conductance is involved in the activation of this signaling system.