“…The resulting nucleic acid biosensing scaffolds were able to tailor sensitivity according with the required application by the precise control of the spacing between the immobilized probes [82], exhibited higher stability (the tetrahedron moved slower than monothiolated probes [77]), a 5000-fold greater affinity, and were less-prone to unspecific adsorptions than the biosensors constructed with single point-tethered oligonucleotides [83]. The tetrahedral bioscaffolds were used to immobilize DNA probes [77,79,82,83,84,85], antibodies [80,86,87], and aptamers [77,78] as well as in connection with different amplification strategies including hybridization chain reaction (HCR [79]), rolling circle amplification (RCA [88]), analyte-triggered nanoparticle localization-HCR dual amplification [89], DNA tetrahedral nanostructures as reporter probes [85], and guanine nanowire amplification [90]. These low fouling DNA nanostructured bioplatforms were applied to the determination of nucleic acids (DNAs [77,82,83,84] and miRNAs [79,88,89,90,91,92,93]) proteins (TNF-α [86], thrombin [77], and prostate specific antigen (PSA) [80]) and peptides (pneumococcal surface protein A (PspA) peptide [87]) as well as of small molecules (cocaine [78]) in particularly fouling samples such as serum [77,78,80,82,90], PCR products from clinical samples [83], cell lysates [87], and total RNA extracted from cells [88,89], serum [88], and tumor tissues [91,92].…”