Ischemic stroke seriously threatens human health and creates a large social burden. The present study investigated whether tissue inhibitor of metalloproteinases-3 (TIMP3) prevented cerebral ischemia/reperfusion (I/R), with the aim to explore the underlying mechanism. A transient middle cerebral artery occlusion model was conducted in mice, and oxygen glucose deprivation and reoxygenation (OGD/R) was investigated in PC12 cells to mimic cerebral ischemia-reperfusion injury (CIRI). Western blotting was used to determine the expression of TIMP3, Bax, Bcl-2 and AKT. TUNEL was used to detect apoptosis in cerebral tissues or cultured PC12 cells. Expression levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected to reveal oxidative stress. The results demonstrated that TIMP3 expression was significantly decreased after I/R in vivo or OGD/R in vitro, and the number of TUNEL-positive cells was reduced by the overexpression of TIMP3.