BackgroundWe previously found that subjects with amnestic mild cognitive impairment exhibit a pro-inflammatory immune profile in the cerebrospinal fluid similar to multiple sclerosis, a central nervous system autoimmune disease. We therefore hypothesized that early neuroinflammation would reflect increases in brain amyloid burden during amnestic mild cognitive impairment.MethodsCerebrospinal fluid and blood samples were collected from 24 participants with amnestic mild cognitive impairment (12 men, 12 women; 66 ± 6 years; 0.5 Clinical Dementia Rating) enrolled in the AETMCI study. Analyses of cerebrospinal fluid and blood included immune profiling by multi-parameter flow cytometry, genotyping for apolipoprotein (APO)ε, and quantification of cytokine and immunoglobin levels. Amyloid (A)β deposition was determined by 18F-florbetapir positron emission tomography. Spearman rank order correlations were performed to assess simple linear correlation for parameters including amyloid imaging, central and peripheral immune cell populations, and protein cytokine levels.ResultsSoluble Aβ42 in the cerebrospinal fluid declined as Aβ deposition increased overall and in the precuneous and posterior cingulate cortices. Lymphocyte profiling revealed a significant decline in T cell populations in the cerebrospinal fluid, specifically CD4+ T cells, as Aβ deposition in the posterior cingulate cortex increased. In contrast, increased Aβ burden correlated positively with increased memory B cells in the cerebrospinal fluid, which was exacerbated in APOε4 carriers. For peripheral circulating lymphocytes, only B cell populations decreased with Aβ deposition in the precuneous cortex, as peripheral T cell populations did not correlate with changes in brain amyloid burden.ConclusionsElevations in brain Aβ burden associate with a shift from T cells to memory B cells in the cerebrospinal fluid of subjects with amnestic mild cognitive impairment in this exploratory cohort. These data suggest the presence of cellular adaptive immune responses during Aβ accumulation, but further study needs to determine whether lymphocyte populations contribute to, or result from, Aβ dysregulation during memory decline on a larger cohort collected at multiple centers.Trial registrationAETMCI NCT01146717
Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-017-0910-x) contains supplementary material, which is available to authorized users.