Large aggregates of misfolded -synuclein inside neuronal cells are the hallmarks of Parkinson's disease. The protein's natural function and its supposed toxicity, however, are believed to be closely related to its interaction with cell and vesicle membranes. Upon this interaction, the protein folds into an -helical structure and intercalates into the membrane. In this study, we focus on the changes in the lipid bilayer caused by this intrusion. In situ X-ray reflectivity was applied to determine the vertical density structure of the bilayer before and after exposure to -synuclein. It was found that the -synuclein insertion, wild type and E57K variant, caused a reduction in bilayer thickness. This effect may be one factor in the membrane pore formation ability of -synuclein.
AbstractLarge aggregates of misfolded α-synuclein inside neuronal cells are the hallmarks of Parkinson's disease. The protein's natural function and its supposed toxicity, however, are believed to be closely related to its interaction with cell and vesicle membranes. Upon this interaction, the protein folds into an α-helical structure and intercalates into the membrane. In this study, we focus on the changes in the lipid bilayer caused by this intrusion. In situ X-ray reflectivity was applied to determine the vertical density structure of the bilayer before and after exposure to α-synuclein. It was found that the α-synuclein insertion, wild type and E57K variant, caused a reduction in bilayer thickness. This effect may be one factor in the membrane pore formation ability of α-synuclein.