The cabled seafloor observation network, which provides abundant power and broad bandwidth to seafloor scientific packages, has become one of the most efficient ocean exploration methods because of its long-term, real-time, and sustained presence. However, node failure
or maintenance may shut down the system until the situation is cleared. An active node switching method based on discrete-voltage intervention is proposed to establish a reliable and robust underwater electrical network that allows the system to operate partially amid node failure or maintenance.
This method switches a specific node on/off from the network whenever necessary. The main structure and operating mechanism of this switching method are presented in this paper. A prototype was established, and several tests were performed in a laboratory to validate its feasibility and reliability.
The prototype was then integrated into a pool-testing underwater network that included a 50-km electrical/optical submarine cable between the base station and the junction box. The test results demonstrated that the active node-switching method can efficiently and reliably fix node failure
emergency situations for cabled ocean networks.