We present a sample of 151 dwarf galaxies (10 8.5 M 10 9.5 M ) that exhibit optical spectroscopic signatures of accreting massive black holes (BHs), increasing the number of known active galaxies in this stellar-mass range by more than an order of magnitude. Utilizing data from the Sloan Digital Sky Survey Data Release 8 and stellar masses from the NASA-Sloan Atlas, we have systematically searched for active BHs in ∼25,000 emission-line galaxies with stellar masses comparable to the Magellanic Clouds and redshifts z < 0.055. Using the narrow-line [O iii]/Hβ versus [N ii]/Hα diagnostic diagram, we find photoionization signatures of BH accretion in 136 galaxies, a small fraction of which also exhibit broad Hα emission. For these broad-line active galactic nucleus (AGN) candidates, we estimate BH masses using standard virial techniques and find a range of 10 5 M BH 10 6 M and a median of M BH ∼ 2 × 10 5 M . We also detect broad Hα in 15 galaxies that have narrow-line ratios consistent with star-forming galaxies. Follow-up observations are required to determine if these are true type 1 AGN or if the broad Hα is from stellar processes. The median absolute magnitude of the host galaxies in our active sample is M g = −18.1 mag, which is ∼1-2 mag fainter than previous samples of AGN hosts with low-mass BHs. This work constrains the smallest galaxies that can form a massive BH, with implications for BH feedback in low-mass galaxies and the origin of the first supermassive BH seeds.