In this effort, we utilize a decentralized neuro-adaptive scheme in extinguishing both the chaotic and hyperchaotic dynamics of the so-called “Smart Valves” network. In particular, a network of two dynamically interconnected bidirectional solenoid actuated butterfly valves undergoes the harmful chaotic/hyperchaotic dynamics subject to some initial conditions and critical parameters. Crucial trade-offs, including robustness, computational burden, and practical feasibility of the control scheme, are thoroughly investigated. The advantages and shortcomings of the decentralized neuro-adaptive method are compared with those of the direct decentralized adaptive one to yield a computationally efficient, practically feasible, and robust scheme in the presence of the coupled harmful responses.