To maximize the accuracy of classification for medical images especially in chest- X ray, we need to improve quality of CXR images or high resolute images will be needed. Pneumonia is a lung infection caused by organism like bacteria or virus. Mostly Chest X-Ray (CXR) is used to detect the infection, but due to limitation of existing equipment, bandwidth, storage space we obtain low quality images. Spatial resolution of medical images is reduced due to image acquisition time, low radiation dose. Quality in medical images plays a major role for clinical diagnosis of disease in deep learning. There is no doubt that noise, low resolution and annotations in chest images are major constraint to the performance of deep learning. Researchers used famous image enhancement algorithms: Histogram equalization (HE), Contrast-limited Adaptive Histogram Equalization (CLAHE), De-noising, Discrete Wavelet Transform (DWT), Gamma Correction (GC), but it is still a challenging task to improve features in images. Computer vision and Super resolution are growing fields of deep learning. Super resolution is also feasible for mono chromatic medical images, which improve the region of interest. Multiple low-resolution images mix with high resolution and then reconstruct a target input image to high quality image by using Super Convolution Neural Network (SRCNN). The objective evaluation based on pixel difference-based PSNR and Human visual system SSIM metric are used for quality measurement. In this study we achieve effective value of PSNR (40 to 43 dB) by considering 30 images of different category (normal, viral or bacterial pneumonia) and SSIM value varies from 97% to 98%. The experiment shows that image quality of CXR is increased by SRCNN, and then high qualitative images will be used for further classification, so that significant parameter of accuracy will be finding in diagnosis of disease in deep learning.