“…Therefore, many supervised learning algorithms can be effectively used to develop simulation metamodels. These include neural networks (Alam, McNaught, & Ringrose, 2004; Can & Heavey, 2012; Kuo, Yang, Peters, & Chang, 2007; Xanthopoulos & Koulouriotis, 2018), kriging/Gaussian process (Dancik, Jones, & Dorman, 2010; Dosi, Pereira, & Virgillito, 2018; Kleijnen, 2009; Salle & Yıldızoğlu, 2014), SVR (Clarke, Griebsch, & Simpson, 2005; Edali & Yücel, 2018; Fonoberova, Fonoberov, & Mezić, 2013; Zhou, Shao, Jiang, Zhou, & Shu, 2015), RFs (Edali & Yücel, 2019; Villa‐Vialaneix, Follador, Ratto, & Leip, 2012), multivariate adaptive regression splines (Bozağaç, Batmaz, & Oğuztüzün, 2016; Friedman, 1991), radial basis functions (Hussain, Barton, & Joshi, 2002; Jakobsson, Patriksson, Rudholm, & Wojciechowski, 2010; Mullur & Messac, 2006) and first‐ and second‐order linear regression models (Durieux & Pierreval, 2004; Grow, 2017; Happe, Kellermann, & Balmann, 2006; Kleijnen & Deflandre, 2006). There are several studies in the literature which compare different subsets of these techniques based on different criteria such as accuracy, robustness, interpretability and efficiency (i.e., runtime) (Clarke, Griebsch, & Simpson, 2005; Li, Ng, Xie, & Goh, 2010; Østergård, Jensen, & Maagaard, 2018; Van Gelder, Das, Janssen, & Roels, 2014; Villa‐Vialaneix, Follador, Ratto, & Leip, 2012).…”