2023
DOI: 10.23919/cje.2021.00.442
|View full text |Cite
|
Sign up to set email alerts
|

An Adaptive Interactive Multiple-Model Algorithm Based on End-to-End Learning

Hongfeng Zhu,
Wei Xiong,
Yaqi Cui

Abstract: The interactive multiple-model (IMM) is a popular choice for target tracking. However, to design transition probability matrices (TPMs) for IMMs is a considerable challenge with less prior knowledge, and the TPM is one of the fundamental factors influencing IMM performance. IMMs with inaccurate TPMs can make it difficult to monitor target maneuvers and bring poor tracking results. To address this challenge, we propose an adaptive IMM algorithm based on end-to-end learning. In our method, the neural network is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?