An Adaptive Kalman Filtering Algorithm Without Using Kinematic Models
Hnin Lae Wah,
Aung Myo Thant Sin
Abstract:The performance and accuracy of Kalman filter depends on its gain value related to the process noise covariance and the measurement noise variance which may vary according to experimental settings such as noise and sampling time. Thus, setting the appropriate values for the noise variances that fit for a wide range of experimental setting is a challenge for conventional Kalman filter. This paper proposes an adaptive Kalman filter with the adaptive noise variance for velocity estimation without using kinematic … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.