The trade-off between high-performance data transmission and low-energy consumption is a long-existing issue in the field of wireless communications. Efficient data exchange is critical for battery-equipped mobile devices typically used in distributed surveillance scenarios, where it may be required to transmit video or audio streams between in-network nodes. In such cases, the devices carried by operators require to be as lightweight as possible. However, low-power and lossy networks do not provide sufficient bandwidth to meet the requirements of streaming transmissions, while high-performance communications result in high energy consumptions, shortening the lifetimes of the devices. In this paper, we propose a Data-driven IoToriented dual-Network Management Protocol (DNMP), oriented to Internet of Things (IoT), which leverages on the presence of two IP-addressable radio interfaces on the same node: one with low energy consumption (and throughput) and one with high throughput (and energy consumption). The low-power network acts both as an independent data plane and as a control plane for the highthroughput network, which is turned on whenever necessary to support multimedia streaming. In order to validate our protocol, we consider the integration of low-power IEEE 802.15.4 radio transceiver and high-throughput IEEE 802.11s radio transceivers. An extensive experimental investigation is then carried out, with the following goals: (i) investigating the performance of the two overlaid networks (IEEE 802.15.4 and IEEE 802.11s); and ii) determining the critical threshold, in terms of amount of data to be transmitted, beyond which the use of DNMP becomes advantageous.978-1-4673-6305-1/15/$31.00 ©2015 IEEE IEEE ICC 2015 -Workshop on Smart Communication Protocols and Algorithms (SCPA 2015)