An Adaptive-Noise-Bound-Based Set-Membership Method for Process Identification of Industrial Control Loops
Zhu Wang,
Qian Wang,
Shaokang Zhang
Abstract:Modeling of key variable data needs to consider the complex characteristics of systems in the catalytic cracking unit (CCU) of petroleum refining process, such as slow time-varying behavior, complex dynamic properties, distributed traits, and unknown stochastic noise. To fully capture the dynamics of a linear ordinary dynamic process without introducing incremental components, an adaptive-noise-bound-based set-membership method (RSMI) is proposed in this paper. Under the set-membership framework, the output se… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.