2022
DOI: 10.20944/preprints202210.0418.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An Adaptive Refinement Scheme for Depth Estimation Networks

Abstract: Deep learning, specifically the supervised approach, has proved to be a breakthrough in depth prediction. However, the generalization ability of deep networks is still limited, and they cannot maintain a satisfactory performance on some inputs. Addressing a similar problem in the segmentation field, a scheme (f-BRS) has been proposed to refine predictions in the inference time. f-BRS adapts an intermediate activation function to each input by using user clicks as sparse labels. Given the similarity between use… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?