2012
DOI: 10.3923/itj.2012.1251.1257
|View full text |Cite
|
Sign up to set email alerts
|

An Adaptive UKF Algorithm for Single Observer Passive Location in Non-Gaussian Environment

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2015
2015

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 12 publications
0
1
0
Order By: Relevance
“…After state estimation of the above nonlinear system, the linear approximation in EKF (Extended Kalman Filter, EKF) algorithm was replaced by UT [12], and then the UKF [13] algorithm for nonlinear system state estimation was acquired [14]. Now simply after sigma point sampling of the system state vector, the process noise and measurement noise can be separated.…”
Section: Ukf (Unscented Kalman Filter)mentioning
confidence: 99%
“…After state estimation of the above nonlinear system, the linear approximation in EKF (Extended Kalman Filter, EKF) algorithm was replaced by UT [12], and then the UKF [13] algorithm for nonlinear system state estimation was acquired [14]. Now simply after sigma point sampling of the system state vector, the process noise and measurement noise can be separated.…”
Section: Ukf (Unscented Kalman Filter)mentioning
confidence: 99%