In model-free sliding mode control (MFSMC) of permanent magnet synchronous motor (PMSM), the first-order sliding mode surface convergence state is asymptotic convergence, and the dithering of the first-order sliding mode surface causes the motor control performance to degrade when the motor parameters change. To save the problem, a model-free fast non-singular terminal sliding mode control (MFFNTSMC) strategy is proposed. Firstly, considering the perturbation of motor parameters, a mathematical model of embedded permanent magnet synchronous motor is established, and the ultralocal model of the speed link is summarized. Then, according to the defined fast non-singular terminal sliding mode surface and the new reaching law, a new mode-free sliding mode controller based on the speed link is designed, which weakens the jitter by eliminating the high-gain switching by the high-order sliding surface, and at the same time makes the system state converge to zero in a limited time. In order to more accurately track the speed tracking effect, an extended sliding mode observer (ESMO) is used to observe the unknown disturbance of the system in real time. Finally, simulation and experiment comparisons with PI control as well as MFSMC control confirm that the method proposed in this paper has better steady state and transient performance for PMSM.