2022
DOI: 10.1155/2022/7093835
|View full text |Cite
|
Sign up to set email alerts
|

An Advanced Broyden–Fletcher–Goldfarb–Shanno Algorithm for Prediction and Output-Related Fault Monitoring in Case of Outliers

Abstract: In the process industry, fault prediction and product-related fault monitoring are important links to ensure product quality and improve economic benefits. In this paper, under the framework of the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm, a new and more accurate data-driven method, the ABFGS algorithm, is proposed. Compared with the BFGS algorithm, the ABFGS algorithm adds output-related fault monitoring capabilities and has strong robustness, which can eliminate the influence of outliers on measurem… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?