Histogram shifting (HS) has been proved to be a great success in reversible data hiding (RDH). To reduce the quality loss of marked media and the increase in file size, several two-dimensional (2D) HS schemes based on the characteristics of cover media have been proposed recently. However, our analysis shows that the embedding strategies used in these methods can be further optimized. In this paper, two new 2D HS schemes for RDH in H.264/AVC video are developed, one of which uses the DCT coefficient pairs with both values 0 and the other does not. The embedding efficiency of a DCT coefficient pair in different embedding modes is firstly calculated. Then, based on the obtained embedding efficiency along with the statistical distribution of DCT coefficient pairs, two better embedding strategies are proposed. The secret data is finally embedded into the pairs of DCT coefficients of the middle and high frequencies using our proposed strategies. The comparison experiment results demonstrate that our schemes can achieve enhanced visual quality in terms of PSNR, SSIM, and entropy in most cases, and the increase in file size is smaller.