To help students acquire mathematics and science knowledge and competencies, educators typically use multiple external representations (MERs). There has been considerable interest in examining ways to present, sequence, and combine MERs. One prominent approach is the concreteness fading sequence, which posits that instruction should start with concrete representations and progress stepwise to representations that are more idealized. Various researchers have suggested that concreteness fading is a broadly applicable instructional approach. In this theoretical paper, we conceptually analyze examples of concreteness fading in the domains of mathematics, physics, chemistry, and biology and discuss its generalizability. We frame the analysis by defining and describing MERs and their use in educational settings. Then, we draw from theories of analogical and relational reasoning to scrutinize the possible cognitive processes related to learning with MERs. Our analysis suggests that concreteness fading may not be as generalizable as has been suggested. Two main reasons for this are discussed: (1) the types of representations and the relations between them differ across different domains, and (2) the instructional goals between domains and subsequent roles of the representations vary.