Renewable energy systems have emerged as a viable option to mitigate the environmental impacts of traditional fossil fuels. However, the intermittent nature of these renewables, such as solar and wind, makes it challenging to ensure a stable energy supply using only one type. Therefore, combining more than a single technology offers significant advantages in addressing the limitations associated with each individual system. Nevertheless, developing these systems requires substantial financial investments, making it crucial to identify the most suitable locations prior to installing them. In this article, the prime objective was to propose a preliminary evaluation of land suitability for constructing solar and wind hybrid facilities (PV–wind, PV–CSP, and CS–wind) in Tataouine, southern Tunisia. To this end, a GIS-based MCDA methodology was developed based on an extensive literature review and experts’ feedback while considering climate, topography, accessibility, and environmental factors. The results obtained revealed that the optimal area for a CSP–PV hybrid system is about 793 km2, indicating that this combination has the highest potential in terms of available resources and compatibility. On the other hand, well-suited locations for hosting CSP–wind and PV–wind systems covered areas of 412 and 333 km2, respectively. Such specific locations are capable of generating an annual technical potential of 316.169, 91.252, and 62.970 TWh for CSP–PV, CSP–wind, and PV–wind, respectively. Interestingly, comprising almost all of the most appropriate sites, Remada and Dhiba stand as the ideal locations for accommodating such hybrid systems. Considering this outcome, Tataouine can position itself as a model for renewable energy adoption in Tunisia. Therefore, it is imperative for policymakers, investors, and local communities to collaborate and embrace these hybrid systems to capitalize on this immense potential and pave the way for a greener and more prosperous future.