2001
DOI: 10.1006/cviu.2001.0925
|View full text |Cite
|
Sign up to set email alerts
|

An Algebraic Approach to Camera Self-Calibration

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2005
2005
2021
2021

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 23 publications
0
2
0
2
Order By: Relevance
“…In order to keep the algorithm simpler for the ARToolkit, only radial distortion is included. The problem is solved using epipolar algebra by using Dornaika's method [15] to calculate the fundamental matrix F containing the radial correction parameters. When the camera moves, images are corrected and the parameters of the fundamental matrix are minimized through an error function.…”
Section: Figure 41mentioning
confidence: 99%
“…In order to keep the algorithm simpler for the ARToolkit, only radial distortion is included. The problem is solved using epipolar algebra by using Dornaika's method [15] to calculate the fundamental matrix F containing the radial correction parameters. When the camera moves, images are corrected and the parameters of the fundamental matrix are minimized through an error function.…”
Section: Figure 41mentioning
confidence: 99%
“…Tres imágenes tomadas por una misma cámara con parámetros intrínsecos fijos son suficientes para obtener tanto los parámetros extrínsecos como intrínsecos. Aunque esta técnica es muy flexible, aun no se encuentra madura [5].…”
Section: Calibración De Cámaraunclassified
“…Em seguida, normalmente, basta que alguns pontos sejam rastreados ao longo destas imagens para que seja possível realizar a calibração. No entanto, apesar da praticidade e da abundância de algoritmos de autocalibração já propostos (Maybank and Faugeras, 1992;Hartley, 1997;Mendonça and Cipolla, 1999;Dornaika and Chung, 2001), a calibração automática ainda é muito pouco utilizada na prática. Isso se deve principalmente ao grande número de variáveis que precisam ser estimadas, o que leva a algoritmos inexatos e de grande complexidade computacional.…”
Section: Introductionunclassified