A new fuzzy regression algorithm is described and compared with conventional ordinary and weighted least-squares and robust regression methods. The application of these different methods to relevant data sets proves that the performance of the procedure described in this paper exceeds that of the ordinary least-squares method and equals and often exceeds that of weighted or robust methods, including the two fuzzy methods proposed previously (Otto, M.; Bandemer, H., Chemom. Intell. Lab. Syst. 1986, 1, 71. Hu, Y.; Smeyers-Verbeke, J.; Massart, D. L. Chemom. Intell. Lab. Syst. 1990, 8, 143). Moreover, we emphasize the effectiveness and the generality of the two new criteria proposed in this paper for diagnosing the linearity of calibration lines in analytical chemistry.