Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The MRS mode of the JWST-MIRI instrument has been shown to be a powerful tool to characterise the molecular gas emission of the inner region of planet-forming disks. Investigating their spectra allows us to infer the composition of the gas in these regions and, subsequently, the potential atmospheric composition of the forming planets. We present the JWST-MIRI observations of the compact T-Tauri disk, DR Tau, which are complemented by ground-based, high spectral resolution ($R CO ro-vibrational observations. The aim of this work is to investigate the power of extending the JWST-MIRI CO observations with complementary, high-resolution, ground-based observations acquired through the SpExoDisks database, as JWST-MIRI's spectral resolution ($R is not sufficient to resolve complex CO line profiles. In addition, we aim to infer the excitation conditions of other molecular features present in the JWST-MIRI spectrum of DR Tau and link those with CO The archival complementary, high-resolution CO ro-vibrational observations were analysed with rotational diagrams. We extended these diagrams to the JWST-MIRI observations by binning and convolution with JWST-MIRI's pseudo-Voigt line profile. In parallel, local thermal equilibrium (LTE) 0D slab models were used to infer the excitation conditions of the detected molecular species. Various molecular species, including CO CO_2 HCN and C_2H_2 are detected in the JWST-MIRI spectrum of DR Tau, with H_2O being discussed in a subsequent paper. The high-resolution observations show evidence for two CO components: a broad component (full width at half maximum of FWHMsim 33.5 km s$^ $) tracing the Keplerian disk and a narrow component (FWHMsim 11.6 km s$^ $) tracing a slow disk wind. The rotational diagrams yield CO excitation temperatures of $T K. Consistently lower excitation temperatures are found for the narrow component, suggesting that the slow disk wind is launched from a larger radial distance. In contrast to the ground-based observations, much higher excitation temperatures are found if only the high-$J$ transitions probed by JWST-MIRI are considered in the rotational diagrams. Additional analysis of the CO line wings suggests a larger emitting area than inferred from the slab models, hinting at a misalignment between the inner ($i and the outer disk ($i Compared to CO we retrieved lower excitation temperatures of $T K for CO_2 HCN and C_2H_2 We show that complementary, high-resolution CO ro-vibrational observations are necessary to properly investigate the excitation conditions of the gas in the inner disk and they are required to interpret the spectrally unresolved JWST-MIRI CO observations. These additional observations, covering the lower-$J$ transitions, are needed to put better constraints on the gas physical conditions and they allow for a proper treatment of the complex line profiles. A comparison with JWST-MIRI requires the use of pseudo-Voigt line profiles in the convolution rather than simple binning. The combined high-resolution CO and JWST-MIRI observations can then be used to characterise the emission, in addition to the physical and chemical conditions of the other molecules with respect to CO . The inferred excitation temperatures suggest that CO originates from the highest atmospheric layers close to the host star, followed by HCN and C_2H_2 which emit, together with CO from slightly deeper layers, whereas the CO_2 emission originates from even deeper inside or further out of the disk.
The MRS mode of the JWST-MIRI instrument has been shown to be a powerful tool to characterise the molecular gas emission of the inner region of planet-forming disks. Investigating their spectra allows us to infer the composition of the gas in these regions and, subsequently, the potential atmospheric composition of the forming planets. We present the JWST-MIRI observations of the compact T-Tauri disk, DR Tau, which are complemented by ground-based, high spectral resolution ($R CO ro-vibrational observations. The aim of this work is to investigate the power of extending the JWST-MIRI CO observations with complementary, high-resolution, ground-based observations acquired through the SpExoDisks database, as JWST-MIRI's spectral resolution ($R is not sufficient to resolve complex CO line profiles. In addition, we aim to infer the excitation conditions of other molecular features present in the JWST-MIRI spectrum of DR Tau and link those with CO The archival complementary, high-resolution CO ro-vibrational observations were analysed with rotational diagrams. We extended these diagrams to the JWST-MIRI observations by binning and convolution with JWST-MIRI's pseudo-Voigt line profile. In parallel, local thermal equilibrium (LTE) 0D slab models were used to infer the excitation conditions of the detected molecular species. Various molecular species, including CO CO_2 HCN and C_2H_2 are detected in the JWST-MIRI spectrum of DR Tau, with H_2O being discussed in a subsequent paper. The high-resolution observations show evidence for two CO components: a broad component (full width at half maximum of FWHMsim 33.5 km s$^ $) tracing the Keplerian disk and a narrow component (FWHMsim 11.6 km s$^ $) tracing a slow disk wind. The rotational diagrams yield CO excitation temperatures of $T K. Consistently lower excitation temperatures are found for the narrow component, suggesting that the slow disk wind is launched from a larger radial distance. In contrast to the ground-based observations, much higher excitation temperatures are found if only the high-$J$ transitions probed by JWST-MIRI are considered in the rotational diagrams. Additional analysis of the CO line wings suggests a larger emitting area than inferred from the slab models, hinting at a misalignment between the inner ($i and the outer disk ($i Compared to CO we retrieved lower excitation temperatures of $T K for CO_2 HCN and C_2H_2 We show that complementary, high-resolution CO ro-vibrational observations are necessary to properly investigate the excitation conditions of the gas in the inner disk and they are required to interpret the spectrally unresolved JWST-MIRI CO observations. These additional observations, covering the lower-$J$ transitions, are needed to put better constraints on the gas physical conditions and they allow for a proper treatment of the complex line profiles. A comparison with JWST-MIRI requires the use of pseudo-Voigt line profiles in the convolution rather than simple binning. The combined high-resolution CO and JWST-MIRI observations can then be used to characterise the emission, in addition to the physical and chemical conditions of the other molecules with respect to CO . The inferred excitation temperatures suggest that CO originates from the highest atmospheric layers close to the host star, followed by HCN and C_2H_2 which emit, together with CO from slightly deeper layers, whereas the CO_2 emission originates from even deeper inside or further out of the disk.
Context. A rich inventory of complex organic molecules (COMs) has been observed in high abundances in the gas phase toward Class 0 protostars. It has been suggested that these molecules are formed in ices and sublimate in the warm inner envelope close to the protostar. However, only the most abundant COM, methanol (CH3OH), had been firmly detected in ices before the era of the James Webb Space Telescope (JWST). Now, it is possible to detect the interstellar ices of other COMs and constrain their ice column densities quantitatively. Aims. We aim to determine the column densities of several oxygen-bearing COMs (O-COMs) in both gas and ice for two low-mass protostellar sources, NGC 1333 IRAS 2A (hereafter IRAS 2A) and B1-c, as case studies in our JWST Observations of Young proto-Stars (JOYS+) program. By comparing the column density ratios with respect to CH3OH between both phases measured in the same sources, we can probe the evolution of COMs from ice to gas in the early stages of star formation. Methods. The column densities of COMs in gas and ice were derived by fitting the spectra observed by the Atacama Large Millimeter/submillimeter Array (ALMA) and the JWST/Mid-InfraRed Instrument-Medium Resolution Spectroscopy (MIRI-MRS), respectively. The gas-phase emission lines were fit using local thermal equilibrium models, and the ice absorption bands were fit by matching the infrared spectra measured in laboratories. The column density ratios of four O-COMs (CH3CHO, C2H5OH, CH3OCH3, and CH3OCHO) with respect to CH3OH were compared between ice and gas in IRAS 2A and B1-c. Results. We were able to fit the fingerprint range of COM ices between 6.8 and 8.8 μm in the JWST/MIRI-MRS spectra of B1-c using similar components to the ones recently used for NGC 1333 IRAS 2A. We claim detection of CH4, OCN−, HCOO−, HCOOH, CH3CHO, C2H5OH, CH3OCH3, CH3OCHO, and CH3COCH3 in B1-c, and upper limits have been estimated for SO2, CH3COOH, and CH3CN. The total abundance of O-COM ices is constrained to be 15% with respect to H2O ice, 80% of which is dominated by CH3OH. The comparison of O-COM ratios with respect to CH3OH between ice and gas shows two different cases. On the one hand, the column density ratios of CH3OCHO and CH3OCH3 match well between the two phases, which may be attributed to a direct inheritance from ice to gas or strong chemical links with CH3OH. On the other hand, the ice ratios of CH3CHO and C2H5OH with respect to CH3OH are higher than the gas ratios by 1–2 orders of magnitude. This difference can be explained by gas-phase reprocessing following sublimation, or different spatial distributions of COMs in the envelope, which is an observational effect resulting from ALMA and JWST tracing different components in a protostellar system. Conclusions. The firm detection of COM ices other than CH3OH is reported in another well-studied low-mass protostar, B1-c, following the recent detection in NGC 1333 IRAS 2A. The column density ratios of four O-COMs with respect to CH3OH show both similarities and differences between gas and ice. Although the straightforward explanations would be the direct inheritance from ice to gas and the gas-phase reprocessing, respectively, other possibilities such as different spatial distributions of molecules cannot be excluded.
OCS and SO2 are both major carriers of gaseous sulfur and are the only sulfurated molecules detected in interstellar ices to date. They are thus the ideal candidates for exploring the evolution of the volatile sulfur content throughout the different stages of star formation. We aim to investigate the chemical history of interstellar OCS and SO2 by deriving a statistically significant sample of gas-phase column densities toward massive protostars and comparing them to observations of gas and ices toward other sources, from dark clouds to comets. We analyzed a subset of 26 line-rich massive protostars observed by ALMA in Band 6 as part of the High Mass Protocluster Formation in the Galaxy (ALMAGAL) survey. Column densities were derived for OCS and SO2 from their rare isotopologs O^ CS and SO2 toward the compact gas around the hot cores. We compared the abundance ratios of gaseous OCS SO2 and CH3OH with ice detections toward both high- and low-mass sources as well as dark clouds and comets. We find that gas-phase column density ratios of OCS and SO2 with respect to methanol remain fairly constant as a function of luminosity between low- and high-mass sources, despite their very different physical conditions. In our dataset OCS and SO2 are weakly correlated. The derived gaseous OCS and SO2 abundances relative to CH3OH are overall similar to protostellar ice values, with a significantly larger scatter for SO2 than for OCS . Cometary and dark-cloud ice values agree well with protostellar gas-phase ratios for OCS whereas higher abundances of SO2 are generally seen in comets compared to the other sources. Gaseous SO2 OCS ratios are consistent with ices toward dark clouds, protostars, and comets, albeit with some scatter. The constant gas-phase column density ratios throughout low- and high-mass sources indicate an early-stage formation before intense environmental differentiation begins. Icy protostellar values are similar to the gas-phase medians and are compatible with an icy origin for these species followed by thermal sublimation. The larger spread in SO2 compared to OCS ratios with respect to CH3OH is likely due to a more water-rich chemical environment associated with the former, as opposed to a CO -rich origin for the latter. Post-sublimation gas-phase processing of SO2 can also contribute to the large spread. Comparisons to ices in dark clouds and comets point to a significant inheritance of OCS from earlier to later evolutionary stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.