We review the use of young low mass stars and protostars, or young stellar objects (YSOs), as tracers of star formation. Observations of molecular clouds at visible, infrared, radio and X-ray wavelengths can identify and characterize the YSOs populating these clouds, with the ability to detect deeply embedded objects and all evolutionary stages. Surveys with the Spitzer, Herschel, XMM-Newton and Chandra space telescopes have measured the spatial distribution of YSOs within a number of nearby (< 2.5 kpc) molecular clouds, showing surface densities varying by more than three orders of magnitude. These surveys have been used to measure the spatially varying star formation rates and efficiencies within clouds, and when combined with maps of the molecular gas, have led to the discovery of star-forming relations within clouds. YSO surveys can also characterize the structures, ages, and star formation histories of embedded clusters, and they illuminate the relationship of the clusters to the networks of filaments, hubs and ridges in the molecular clouds from which they form. Measurements of the proper motions and radial velocities of YSOs trace the evolving kinematics of clusters from the deeply embedded phases through gas dispersal, providing insights into the factors that shape the formation of bound clusters. On 100 pc scales that encompass entire star-forming complexes, Gaia is mapping the young associations of stars that have dispersed their natal gas and exist alongside molecular clouds. These surveys reveal the complex structures and motions in associations, and show evidence for supernova driven expansions. Remnants of these associations have now been identified by Gaia, showing that traces of star-forming structures can persist for a few hundred million years.