This study reports three new crystalline aluminum isopropoxide oxide fluorides with molar ratios of Al:F equal to 1:1 and 1:1.25. These are the first three representatives isolated without the incorporation of external donor molecules. Compound 1 Al(4)F(4)(μ(4)-O)(μ-O(i)Pr)(5)[H(O(i)Pr)(2)] contains a tetranuclear unit consisting of two different five fold coordinated AlFO(4)-units, with F exclusively in the terminal position. Compound 2, Al(4)F(4)(μ(4)-O)(μ-O(i)Pr)(5)[H(O(i)Pr)(2)]·Al(5)F(5)(μ(5)-O)(μ-O(i)Pr)(8), contains both a tetranuclear unit (as in 1) and a pentanuclear Al-unit. Al-atoms in the latter are five- and six fold coordinated. Compound 3, Al(16)F(20)(μ(4)-O)(4)(μ-O(i)Pr)(20)·2((i)PrOH), exhibits a slightly higher fluorination degree and contains an oligomeric chain of four F-linked tetranuclear Al-units. In addition to X-ray structure analysis, compound 1 was characterized by different solid state MAS NMR techniques, including (27)Al triple quantum MAS NMR and (1)H, (1)H→(13)C CP, (19)F and (27)Al MAS NMR. On the basis of the collected data, a reliable decomposition of (27)Al single pulse MAS NMR spectra and an unambiguous assignment of the resonances to the respective structural AlFO(4)-units are given. The new crystalline aluminum isopropoxide oxide fluorides are direct evidence of the fluorolytic sol-gel mechanism previously discussed.