2022
DOI: 10.36890/iejg.957190
|View full text |Cite
|
Sign up to set email alerts
|

An Analogue of Thébault's Theorem Linking the Radical Center of Four Spheres with the Insphere and the Monge Point of a Tetrahedron

Abstract: In 1953, Victor Thébault conjectured a link between the altitudes of a tetrahedron and the radical center of the four spheres with the centers at the vertices of this tetrahedron and the corresponding tetrahedron altitudes as radii. This conjecture was proved in 2015. In this paper, we propose an analogue of Th\'{e}bault's theorem. We establish a link between the radical center of the four spheres, the insphere, and the Monge point of a tetrahedron.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 7 publications
0
0
0
Order By: Relevance