Sharing trajectories is beneficial for many real-world applications, such as managing disease spread through contact tracing and tailoring public services to a population's travel patterns. However, public concern over privacy and data protection has limited the extent to which this data is shared. Local differential privacy enables data sharing in which users share a perturbed version of their data, but existing mechanisms fail to incorporate user-independent public knowledge (e.g., business locations and opening times, public transport schedules, geo-located tweets). This limitation makes mechanisms too restrictive, gives unrealistic outputs, and ultimately leads to low practical utility. To address these concerns, we propose a local differentially private mechanism that is based on perturbing hierarchically-structured, overlapping
n
-grams (i.e., contiguous subsequences of length
n
) of trajectory data. Our mechanism uses a multi-dimensional hierarchy over publicly available external knowledge of real-world places of interest to improve the realism and utility of the perturbed, shared trajectories. Importantly, including real-world public data does not negatively affect privacy or efficiency. Our experiments, using real-world data and a range of queries, each with real-world application analogues, demonstrate the superiority of our approach over a range of alternative methods.