In DNA splicing systems, restriction enzymes and ligases cleave and recombine DNA molecules based on the cleavage pattern of the restriction enzymes. The set of molecules resulting from the splicing system depicts a splicing language. In this research, an algorithm for DNA splicing systems is developed using C++ visual programming. The splicing languages which have been characterised through some theorems based on the crossings and sequences of the restriction enzymes, are generated as the output from this computation. In order to generate the splicing languages, the algorithm detects and calculates the number of cutting sites of the restriction enzymes found in the initial molecules, determines whether the sequence of restriction enzyme is a palindrome or not, and if the restriction enzymes have the same or different crossings. The results from this research depict the splicing languages obtained from the manual computations, which contributes to the development of computational software in DNA computing.