Achieving high-performance 3D printing composite filaments requires addressing challenges related to fibre wetting and uniform fibre/polymer distribution. This study evaluates the effectiveness of solution (solvent-based) and emulsion (water-based) impregnation techniques to enhance fibre wetting in bleached flax yarns by polylactide (PLA). For the first time, continuous viscose yarn composites were also produced using both impregnation techniques. All the composites were carefully characterised throughout each stage of production. Initially, single yarns were impregnated and consolidated to optimise formulations and processing parameters. Solution impregnation resulted in the highest tensile strength (356 MPa) for PLA/bleached flax filaments, while emulsion impregnation yielded the highest tensile strength for PLA/viscose filaments (255 MPa) due to better fibre wetting and fibre distribution. Impregnated single yarns were then combined, with additional polymer added to produce filaments compatible with standard material extrusion 3D printers. Despite a reduction in the mechanical performance of the 3D-printed composites due to additional polymer impregnation, relatively high tensile and bending strengths were achieved, and the Charpy impact strength (>127 kJ/m2) for the viscose-based composite exceeded the reported values for bio-derived fibre reinforced composites. The robust mechanical performance of these filaments offers new opportunities for the large-scale additive manufacturing of structural components from bio-derived and renewable resources.