2009
DOI: 10.1016/j.fcr.2009.02.014
|View full text |Cite
|
Sign up to set email alerts
|

An analysis of the factors that influence sugarcane yield in Northern Argentina using classification and regression trees

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
49
0
5

Year Published

2012
2012
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 64 publications
(54 citation statements)
references
References 34 publications
0
49
0
5
Order By: Relevance
“…This highlights the importance for the method used to evaluate blocks of outstanding performance to consider the distribution of the data at the moment of classification (in the case of k-means) instead of a fixed arbitrary value. Using clusters of outstanding blocks that are more homogeneous is expected to facilitate the search for beneficial patterns (HAN et al, 2012;FERRARO et al, 2009). …”
Section: Resultsmentioning
confidence: 99%
“…This highlights the importance for the method used to evaluate blocks of outstanding performance to consider the distribution of the data at the moment of classification (in the case of k-means) instead of a fixed arbitrary value. Using clusters of outstanding blocks that are more homogeneous is expected to facilitate the search for beneficial patterns (HAN et al, 2012;FERRARO et al, 2009). …”
Section: Resultsmentioning
confidence: 99%
“…Markers to this axis and points at which they intersect this axis define the stability of genotypes. Accordingly Genotypes 12,35,10,5,46,17,28,19,8,2,20,14 and 4 located to the right side of the ordinate and accumulated in order better brix% in cane while genotypes 12, 35, 10, 17, 28, 19, 8 and 2 had short projections and are both high yielder and stable genotypes in brix accumulation over crop ages and across locations. The result is consistent with the results of maturity classification displayed using PCA bi-plots for using (Figure 2a and 2b).…”
Section: Ammi2 Analysismentioning
confidence: 93%
“…Multivariate techniques are suitable for analyzing many variables simultaneously and have been widely used to measure the diversity in germplasm collections assess the relative contributions that various traits [12] and classify variables based on a specific factor [13]. These multivariate techniques have also been used in the classification of germplasm collections, multi-environment trials and analysis of factors contributing to yield [14,15].…”
Section: Advances In Crop Science and Technologymentioning
confidence: 99%
See 1 more Smart Citation
“…Nesse trabalho, os autores concluem que uma maior ênfase deveria ser dada ao manejo da cultura do que à escolha das variedades, de modo a garantir maior longevidade dos canaviais. Já Ferraro et al (2009), em seu trabalho de análise de bancos de dados de produtividade da cana de açúcar utilizando técnica de mineração de dados, classificaram diversas variáveis, tanto de manejo quanto ambientais, de acordo com sua importância hierárquica na variabilidade das produtividades (TCH), e concluíram que as chuvas tiveram um peso relativamente pequeno para explicar a variabilidade das produtividades quando comparada com outros fatores não associados ao clima, como número de cortes e variedade.…”
Section: Introductionunclassified